Chinmo and Neuroblast Temporal Identity
نویسنده
چکیده
Although spatial patterning during embryonic development is well characterized, a corresponding framework for temporal patterning has not been established. In this issue, Zhu et al. (2006) identify the Chinmo protein as conferring temporal identity on the neural progeny of Drosophila neuroblasts, revealing appealing parallels with spatial patterning.
منابع مشابه
Gradients of the Drosophila Chinmo BTB-Zinc Finger Protein Govern Neuronal Temporal Identity
Many neural progenitors, including Drosophila mushroom body (MB) and projection neuron (PN) neuroblasts, sequentially give rise to different subtypes of neurons throughout development. We identified a novel BTB-zinc finger protein, named Chinmo (Chronologically inappropriate morphogenesis), that governs neuronal temporal identity during postembryonic development of the Drosophila brain. In both...
متن کاملHierarchical Deployment of Factors Regulating Temporal Fate in a Diverse Neuronal Lineage of the Drosophila Central Brain
The anterodorsal projection neuron lineage of Drosophila melanogaster produces 40 neuronal types in a stereotypic order. Here we take advantage of this complete lineage sequence to examine the role of known temporal fating factors, including Chinmo and the Hb/Kr/Pdm/Cas transcriptional cascade, within this diverse central brain lineage. Kr mutation affects the temporal fate of the neuroblast (N...
متن کاملSteroid hormone induction of temporal gene expression in Drosophila brain neuroblasts generates neuronal and glial diversity
An important question in neuroscience is how stem cells generate neuronal diversity. During Drosophila embryonic development, neural stem cells (neuroblasts) sequentially express transcription factors that generate neuronal diversity; regulation of the embryonic temporal transcription factor cascade is lineage-intrinsic. In contrast, larval neuroblasts generate longer ~50 division lineages, and...
متن کاملTemporal Transcription Factors and Their Targets Schedule the End of Neural Proliferation in Drosophila
The timing mechanisms responsible for terminating cell proliferation toward the end of development remain unclear. In the Drosophila CNS, individual progenitors called neuroblasts are known to express a series of transcription factors endowing daughter neurons with different temporal identities. Here we show that Castor and Seven-Up, members of this temporal series, regulate key events in many ...
متن کاملLet-7-complex microRNAs regulate the temporal identity of Drosophila mushroom body neurons via chinmo.
Many neural lineages display a temporal pattern, but the mechanisms controlling the ordered production of neuronal subtypes remain unclear. Here, we show that Drosophila let-7 and miR-125, cotranscribed from the let-7-Complex (let-7-C) locus, regulate the transcription factor chinmo to control temporal cell fate in the mushroom body (MB) lineage. We find that let-7-C is activated in postmitotic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 127 شماره
صفحات -
تاریخ انتشار 2006